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Online Resource 1. Derivation, Algebraic Relationships, and Proofs 

Female Mate Choice 

 We assume that all females have identical characteristics but may choose between two 

main categories of males. These are type 1, generally devoting a substantial amount of time t1 to 

reproductive success (0 < t1 < tf, where tf is the reproductive time spent by a fertilized female) 

and resulting in reproductive payoff for the pair of r1 when the female is successfully fertilized; 

and type 2, generally devoting less time t2 to reproductive success than type 1 (0 < t2 < t1) and 

typically resulting in lower reproductive payoff r2 for the pair following successful fertilization 

(r2 < r1). 

 Females can devote time td to evaluating a male drawn randomly from the male pool; she 

successfully identifies his type with probability d(td). This discrimination is conducted with 
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diminishing returns following the exponential function 𝑑(𝑡𝑑) = 1 − 𝑒𝐷𝑡𝑑 , with D the 

exponential rate constant in units of 1/time. Let mi be the chance that the female pairs with a 

male of type i encountered in the male pool. Here, pairing implies mating and a commitment of 

time ti to support reproduction. We set mi = dci + (1-d)c0, where ci is the chance that type i is 

chosen for pairing if successfully categorized by the female, and c0 is the chance an individual of 

an undiscriminated type is chosen for pairing.  

 Let bi be the chance that the pair involving a type i male breaks up after reproduction; 

then 1 – bi is the probability of pair fidelity, the chance that the pairing is maintained through the 

next reproductive cycle. Then the expected number of reproductive cycles before break-up is 

∑ (1 − 𝑏𝑖)
𝑗∞

𝑗=0 = 1/𝑏𝑖, and the number of reproductive cycles beyond the first in a sequence is 

1/bi – 1 = (1-bi)/bi. Let tn be the time following reproduction that a female is temporarily infertile 

regardless of receptivity to mating (e.g. the time not in estrus for mammals). Let γi be the chance 

of fertilization and subsequent reproduction of a female pairing with a type i male. Then a male 

that pairs only once (or for the last time) with a female expects to invest time γiti in reproduction 

(i.e. time ti if the mating results in fertilization but zero time otherwise), and a male remaining 

with a female for additional reproductive cycles invests γitf + tn time in each cycle before the last 

(i.e. the same time as the female). This means that a male evaluated by a female leaves the male 

pool for expected time Ti = td + miγiti + mi(γitf + tn)(1 – bi)/bi. Males remain unselected in the 

male pool for time τ. 

 Let fi be the fraction of all males in the population that are type i, and let pi be the fraction 

of males in the male pool that are type i. Then with types 1 and 2 present, it follows that 

𝑝1 =
𝑓1𝜏12/(𝜏12+𝑇1)

𝑓1𝜏12/(𝜏12+𝑇1)+𝑓2𝜏12/(𝜏12+𝑇2)
=  

𝑓1(𝜏12+𝑇2)

𝑓1(𝜏12+𝑇2)+𝑓2(𝜏12+𝑇1)
, and p2 = 1-p1.  



There are nm males and nf females in the population and thus a population sex ratio σ = nm/nf. Let 

σ0 be the sex ratio at maturation, and let λf and λi be the reproductively active lifetime of an 

individual female or type-i male. Then 

𝜎 = 𝜎0

∑ 𝜆𝑗𝑓𝑗
𝑘
𝑗=1

𝜆𝑓
  

with k male types in the population. With males types 1 and 2 in the population, the number of 

males in the pool is then 

𝑃 =
𝑛𝑚𝑓1𝜏12

𝜏12+𝑇1
+  

𝑛𝑚𝑓2𝜏12

𝜏12+𝑇2
.  

 Let ε be the expected time between visits to the male pool by a particular female. Then 

some female is expected to arrive at the pool after every interval of ε/nf. A male in the pool has a 

probability 1/P of being selected when a female arrives. This means the expected number of 

arrivals until he is picked is ∑ (1 − 1/𝑃)𝑗∞
𝑗=0 = 𝑃. The expected total time the male waits to be 

picked in a pool containing male types 1 and 2 is then 𝜏12 = Pε/nf. Thus 

𝜏12 = (
𝑓1𝜏12

𝜏12+𝑇1
+

𝑓2𝜏12

𝜏12+𝑇2
) 𝜀𝜎.  

Rearranging then yields 

 𝜀 =
(𝜏12+𝑇1)(𝜏12+𝑇2)

𝜎(𝑓1𝑇2+𝑓2𝑇1+𝜏12)
. 

 The time a female commits to each pairing with a type i male is 

𝜃𝑖 = [𝛾𝑖𝑡𝑓 + 𝑡𝑛]/𝑏𝑖.  

We assume that the female always commits at least one reproductive cycle to a type 1 or type 2 

male she pairs with even without successful fertilization, and thus θi > tn. With only a single male 

type i in the population, this implies that each male expects to wait in the male pool for time 

𝜏𝑖 = 𝜎𝜃𝑖 − 𝑇𝑖. 



This is the expected number of female reproductive cycles per male, less the time he expects to 

spend out of the male pool during that interval. 

 Now another way to express the interval between visits to the male pool by a female is 

𝜀 = 𝑝1𝑚1𝜃1 + 𝑝2𝑚2𝜃2 + 𝑡𝑑 =
𝑓1(𝑇2+𝜏12)(𝑚1𝜃1+𝑡𝑑)+𝑓2(𝑇1+𝜏12)(𝑚2𝜃2+𝑡𝑑)

𝑓1𝑇2+𝑓2𝑇1+𝜏12
. 

Equating the two expressions for 𝜀 and rearranging then yields 

𝜏12
2 + [𝑇1 + 𝑇2 − 𝜎(𝑓1𝑚1𝜃1 + 𝑓2𝑚2𝜃2 + 𝑡𝑑)]𝜏12 + [𝑇1𝑇2 − 𝜎(𝑓1𝑇2(𝑚1𝜃1 + 𝑡𝑑) +

𝑓2𝑇1(𝑚2𝜃2 + 𝑡𝑑))] = 0, 

solved for τ12 via the quadratic formula. (There is a single solution that yields a biologically 

relevant non-negative result.) 

 The output from a successful reproductive pairing with a type i male is ri. Female fitness 

Ff  is the expected rate of female reproduction Rf  multiplied by her expected reproductive 

lifetime λf. Rf  is the reproductive success from a visit to the male pool by a female, divided by 

the expected time commitment associated with this visit. Thus 

𝐹𝑓 = 𝑅𝑓𝜆𝑓 =
𝜆𝑓(𝑝1𝑚1𝛾1𝑟1/𝑏1+𝑝2𝑚2𝛾2𝑟2/𝑏2)

𝑝1𝑚1𝜃1+𝑝2𝑚2𝜃2+𝑡𝑑
. 

She chooses d(td), c0, c1, and c2 to maximize her fitness. With r1 > r2, c1 = 1 and c2 = 0. The 

probability c0 of mating with an undiscriminated male must equal 1 as d -> 0; we therefore 

generally set c0 = 1, though we can let 𝑐0 = (1 − 𝑑)𝜔, where ω > 0, when c0 decreases with 

increasing d. (This generally has little effect on the results unless ω >> 1.) For the two male 

types, expected reproductive success of an individual is 

𝐹1 = 𝑅1𝜆1 =
𝜆1𝑚1𝛾1𝑟1/𝑏1

𝜏12+𝑇1
, and 𝐹2 = 𝑅2𝜆2 =

𝜆2𝑚2𝛾2𝑟2/𝑏2

𝜏12+𝑇2
. 

Suppose F1 > F2. Then f1 will increase until F1 = F2 or until f1 = 1. An analogous outcome results 

from F2 > F1. This logic holds whether types 1 and 2 are probabilistic strategies by single 



individuals or they represent pure strategies of competing individuals. (Technically, this 

corresponds to the distinction between an evolutionarily stable mixed strategy and an 

evolutionarily stable state of the male population.)  

 Putting the fitness terms together, we have that male fitness Fm is 

Fm = f1F1 + f2F2. 

The joint solution for td and f1 (and thus f2) is evolutionarily stable in the absence of mutant 

alternative male strategies. Of course Ff = Fm, which provides a check on the results. 

Male Coercion 

 Consider a mutant male (type 3) that mates with any female encountered in the male 

pool, bypassing the evaluation process. This coercive male has the probability γ3 of fertilizing 

and producing offspring with the female, despite a very low or zero time commitment t3, 

resulting in a generally low reproductive output (r3 < r2). Because a type 3 male is assumed to 

mate only once (or in one brief sequence) with the female, she expends the additional non-

reproductive time tn in association with this mating only if fertilized. As a rare mutant, we 

assume the coercer has to wait time τi to encounter a female like the other males, where i 

designates the stable outcome in the absence of the mutant. The fitness of mutant type 3 is then         

F3 = R3λ3 = λ3γ3r3/τi.  

 In the remainder of this section, we simplify by setting σ0 = 1 and λf = λ1 = λ2 = λ3 (and 

thus the sex ratio σ = 1), the chance of undiscriminated mating c0 = 1, and the pairing fidelity 

parameters b1 = b2 = 1, though σ ≠1, c0 = c0(d), and the bi < 1 could readily be accommodated. It 

follows, solving the quadratic equation for τi, that the coercer can invade a population of pure 

type 1 when 

𝜆3𝛾3𝑟3

𝜏1
>

𝜆1𝛾1𝑟1

𝜏1+𝑇1
, where 𝜏1 = 𝛾1(𝑡𝑓 − 𝑡1) + 𝑡𝑛, and thus 

𝜆3𝛾3𝑟3

𝜆1𝛾1𝑟1
>

𝛾1(𝑡𝑓−𝑡1)+𝑡𝑛

𝛾1𝑡𝑓+𝑡𝑛
. 



The coercer can invade a population of pure type 2 when 

 
𝜆3𝛾3𝑟3

𝜏2
>

𝜆2𝛾2𝑟2

𝜏2+𝑇2
, where 𝜏2 = 𝛾2(𝑡𝑓 − 𝑡2) + 𝑡𝑛, and thus 

𝜆3𝛾3𝑟3

𝜆2𝛾2𝑟2
>

𝛾2(𝑡𝑓−𝑡2)+𝑡𝑛

𝛾2𝑡𝑓+𝑡𝑛
. 

(Note: in these cases with a single type of male at the ESS, d and td are zero, because 

discrimination is useless.) And the coercer can invade a stable mixture of types 1 and 2 when 

 
𝜆3𝛾3𝑟3

𝜏12
>

𝜆1𝛾1𝑟1

𝜏12+𝛾1𝑡1+𝑡𝑑
, where τ12, the waiting time with a stable mixture of types 1 and 2, is defined 

as above (here with b1 = b2 = 1). This inequality expresses the condition for invasibility of the 

stable mixture; for this mixture, F1 = F2, and thus the inequality implies higher fitness for the 

coercer than for types 1 and 2. Once the coercer invades, it may eliminate its competitors, 

establishing a waiting time of 𝜏3 = 𝛾3(𝑡𝑓 + 𝑡𝑛), because each female either returns to the male 

pool after time tf + tn if fertilized or immediately otherwise. Alternatively, the competitor(s) may 

be able to invade a pure type 3 population. Coercers are invasible by type 1 males when 

 
𝜆3𝛾3𝑟3

𝜏3
<

𝜆1𝛾1𝑟1

𝜏3+𝑇1
 

and by type 2 males when  

 
𝜆3𝛾3𝑟3

𝜏3
<

𝜆2𝛾2𝑟2

𝜏3+𝑇2
. 

Putting these results together, mutual invasibility implies coexistence of types 1 and 3 when 

1 +
𝛾1𝑡1

𝛾3(𝑡𝑓+𝑡𝑛)
<

𝜆1𝛾1𝑟1

𝜆3𝛾3𝑟3
< 1 +

𝛾1𝑡1

𝛾1(𝑡𝑓−𝑡1)+𝑡𝑛
  

and coexistence of types 2 and 3 when 

1 +
𝛾2𝑡2

𝛾3(𝑡𝑓+𝑡𝑛)
<

𝜆2𝛾2𝑟2

𝜆3𝛾3𝑟3
< 1 +

𝛾2𝑡2

𝛾2(𝑡𝑓−𝑡2)+𝑡𝑛
. 

Female Resistance and Policing 

 Female resistance to coercion is assumed to be expressed as reduced magnitudes of the 

fertilization probability γ3 and of reproductive success given fertilization r3. The γ3 coefficient 



may be low in part because female resistance reduces the duration or frequency of mating per 

coercive event. In some species, post-copulatory mechanisms may further reduce the chance of 

coercive fertilization. The r3 coefficient may be diminished by the lack of time or other resource 

commitment by the male to coercive reproduction or by damage to the female during coercion. 

 In some species, coercion may be restricted through social policing. In an unpoliced 

population with only coercive males, each male expects to obtain  

𝑛 =
𝜆3

𝜏3+𝑇3
 matings in his reproductive lifetime. Now let x be the probability that a coercer is 

apprehended and prevented from further reproduction after any particular coercive mating. Then 

his expected number of coercive matings with policing is 

𝐶 = ∑ (1 − 𝑥)𝑖−1𝑛
𝑖=1 = ∑ (1 − 𝑥)𝑖∞

𝑖=0 − ∑ (1 − 𝑥)𝑖 =
1

𝑥

∞
𝑖=𝑛 − (1 − 𝑥)𝑛 ∑ (1 − 𝑥)𝑖∞

𝑖=0 =
1−(1−𝑥)𝑛

𝑥
, 

where x > 0. (As x approaches 0, the limit is found from L’Hopital’s Rule: lim
𝑥→0

1−(1−𝑥)𝑛

𝑥
= 𝑛.) 

Then type 3 can be invaded by type i when 

𝐶𝛾3𝑟3 <
𝜆𝑖𝛾𝑖𝑟𝑖

𝜏3+𝑇𝑖
. 

Now let 𝑛 =
𝜆3

𝜏𝑖+𝑇3
. 

Now type 3 can invade stable type i when 

𝐶𝛾3𝑟3 >
𝜆𝑖𝛾𝑖𝑟𝑖

𝜏𝑖+𝑇𝑖
. 

Because C is less than n in each case, both conditions are less favorable for type 3. 

The proportion pC of n expected to be accomplished despite policing is 

𝑝𝐶 =
1−(1−𝑥)𝑛

𝑥𝑛
. 

We address an example of policing and its implications below. 

Extra-Pair Paternity 



 To this point, the description of the model has implied serial monogamy. But despite 

social pairing, there may be extra-pair mating and reproduction between types. Since pairing 

with type 2 and with type 3 males is typically brief, we restrict these cuckoldry effects to type 1 

by types 2 and 3 and type 2 by type 3. Shifting paternity between types does not affect overall 

reproductive success (i.e. Ff = Fm) but does alter the balance of fitnesses among male types and 

thus their frequencies and chance of persisting.  

 We include these effects in the model by transforming the fitness magnitudes for males of 

each type at follows: 

𝐹1
′ = 𝐹1(1 − 𝑘12𝑓2 − 𝑘13𝑓3), 

𝐹2
′ = 𝐹2(1 − 𝑘23𝑓3) + 𝑘12𝑓1𝐹1, and 

𝐹3
′ = 𝐹3 + 𝑘13𝑓1𝐹1 + 𝑘23𝑓2𝐹2. 

The coefficients kij express the magnitude of the fitness increment lost by a type i male from 

reproduction by his mate with a type j male, per unit frequency of type j. The fitness of type 1 

males is thus reduced by each of the two extra-pair coefficients for types 2 and 3 multiplied by 

the corresponding frequencies of the other types. The fitness of type 2 males is reduced by the 

type 3 coefficient multiplied by the frequency of type 3—and augmented by the type 1 

coefficient multiplied by the frequency of type 1 and its fitness. The type 3 fitness is similarly 

augmented by the fitness increments from types 1 and 2. Note that these fitness redistributions 

leave total fitness unchanged, since 𝐹𝑓 = 𝐹𝑚 = 𝑓1𝐹1
′ + 𝑓2𝐹2

′ + 𝑓3𝐹3
′ = 𝑓1𝐹1 + 𝑓2𝐹2 + 𝑓3𝐹3. 

 By influencing male fitness magnitudes, this extra-pair reproduction alters some of the τ 

values and invasion criteria (see Online Resource 2), shifting the frequencies of male types in the 

population. 

Fitness Relationships 



In each case, Fxy is the fitness of male type x in a population of type y; Fxyz is the fitness of male 

type x in a stable combination of types y and z. Females do not discriminate between types 

except as indicated. The fi* represent evolutionarily stable frequencies of the male types in 

mixtures; these magnitudes are given below when discrimination is absent. In a stable mixture of 

types 1 and 2 when females discriminate, f1* and f2* must be determined numerically. 

𝐹11 = 𝜆1𝛾1(𝑟1/𝑏1)/(𝜏1 + 𝑇1) 

𝐹12 = 𝜆1(1 − 𝑘12)𝛾1(𝑟1/𝑏1)/(𝜏2 + 𝑇1) 

𝐹13 = 𝜆1(1 − 𝑘13)𝛾1(𝑟1/𝑏1)/(𝜏3 + 𝑇1) 

𝐹21 = 𝜆2𝛾2(𝑟2/𝑏2)/(𝜏1 + 𝑇2) + 𝑘12𝐹11 

𝐹22 = 𝜆2𝛾2(𝑟2/𝑏2)/(𝜏2 + 𝑇2) 

𝐹23 = 𝜆2(1 − 𝑘23)𝛾2(𝑟2/𝑏2)/(𝜏3 + 𝑇2) 

𝐹31 = 𝜆3𝛾3𝑟3/(𝜏1 + 𝑇3) + 𝑘13𝐹11 

𝐹32 = 𝜆3𝛾3𝑟3/(𝜏2 + 𝑇3) + 𝑘23𝐹22 

𝐹33 = 𝜆3𝛾3𝑟3/(𝜏3 + 𝑇3) 

𝐹112 = 𝜆1(1 − 𝑘12𝑓2
∗)𝛾1(𝑟1/𝑏1)/(𝜏12 + 𝑇1) 

𝐹113 = 𝜆1(1 − 𝑘13𝑓3
∗)𝛾1(𝑟1/𝑏1)/(𝜏13 + 𝑇1) 

𝐹123 = 𝜆1(1 − 𝑘12𝑓2
∗ − 𝑘13𝑓3

∗)𝛾1(𝑟1/𝑏1)/(𝜏23 + 𝑇1) 

𝐹212 = 𝐹112 

𝐹213 = 𝜆2(1 − 𝑘23𝑓3
∗)𝛾2(𝑟2/𝑏2)/(𝜏13 + 𝑇2) + 𝐹113𝑘12𝑓1

∗ 

𝐹223 = 𝜆2(1 − 𝑘23𝑓3
∗)𝛾2(𝑟2/𝑏2)/(𝜏23 + 𝑇2) 

𝐹312 = 𝜆3𝛾3𝑟3/(𝜏12 + 𝑇3) + 𝐹112(𝑘12𝑓1
∗ + 𝑘23𝑓2

∗) 

𝐹313 = 𝐹113 

𝐹323 = 𝐹223 



Times males are out of the male pool per cycle 

𝑇1 = 𝑡𝑑 + 𝑚1𝛾1𝑡1 + 𝑚1(𝛾1𝑡𝑓 + 𝑡𝑛)(1 − 𝑏1)/𝑏1 

𝑇2 = 𝑡𝑑 + 𝑚2𝛾2𝑡2 + 𝑚2(𝛾2𝑡𝑓 + 𝑡𝑛)(1 − 𝑏2)/𝑏2 

𝑇3 = 𝛾3𝑡3 

When females discriminate between male types 1 and 2, m1 = dc1 + (1 – d)c0 and  m2 = dc2 + (1 – 

d)c0; otherwise, m1 = m2 = 1 and td = d(td) = 0.  

Time between mating with a particular male type and the female’s return to the male pool 

𝜃1 = (𝛾1𝑡𝑓 + 𝑡𝑛)/𝑏1 

𝜃2 = (𝛾2𝑡𝑓 + 𝑡𝑛)/𝑏2 

𝜃3 = 𝛾3(𝑡𝑓 + 𝑡𝑛) 

Waiting times for males in the male pool (without discrimination)   

𝜏1 = 𝜎𝜃1 − 𝑇1 

𝜏2 = 𝜎𝜃2 − 𝑇2 

𝜏3 = 𝜎𝜃3 − 𝑇3 

where σ = σ0 (λi / λf) 

𝜏12 =
𝑇1𝛾2𝜆2𝑟2/𝑏2 − 𝑇2𝛾1(1 − 𝑘12)𝜆1𝑟1/𝑏1

𝛾1(1 − 𝑘12)𝜆1𝑟1/𝑏1 − 𝛾2𝜆2𝑟2/𝑏2
 

𝜏13 =
𝑇1𝛾3𝜆3𝑟3 − 𝑇3𝛾1(1 − 𝑘13)𝜆1𝑟1/𝑏1

𝛾1(1 − 𝑘13)𝜆1𝑟1/𝑏1 − 𝛾3𝜆3𝑟3
 

𝜏23 =
𝑇2𝛾3𝜆3𝑟3 − 𝑇3𝛾2(1 − 𝑘23)𝜆2𝑟2/𝑏2

𝜆2𝛾2(1 − 𝑘23)𝑟2/𝑏2 − 𝛾3𝜆3𝑟3
 

 

Frequencies of male types in stable mixtures (without discrimination) 



Note: Only the 1-2 mixture may involve discrimination; in that case, f1 (where f2 = 1-f1) and td 

are optimized numerically. In the absence of discrimination, the τij value can be directly 

calculated (above); this is substituted into the quadratic equation for τ in the text and solved for fi. 

Because the sex ratio also depends on the frequencies, the result is a quadratic equation in fi of 

the form 𝑎𝑓𝑖
2 + 𝑏𝑓𝑖 + 𝑐 = 0, where 

𝑎 = (𝜏𝑖𝑗(𝜃𝑖 − 𝜃𝑗) + 𝜃𝑖𝑇𝑗 − 𝜃𝑗𝑇𝑖)(𝜎0/𝜆𝑓)(𝜆𝑖 − 𝜆𝑗), 

𝑏 = (𝜏𝑖𝑗(𝜃𝑖 − 𝜃𝑗) + 𝜃𝑖𝑇𝑗 − 𝜃𝑗𝑇𝑖)(𝜎0/𝜆𝑓)𝜆𝑗 + 𝜃𝑗(𝜏𝑖𝑗 + 𝑇𝑖)(𝜎0/𝜆𝑓)(𝜆𝑖 − 𝜆𝑗), and 

𝑐 = −𝜏𝑖𝑗
2 − (𝑇𝑖 + 𝑇𝑗)𝜏𝑖𝑗 − 𝑇𝑖𝑇𝑗 + 𝜃𝑗(𝜏𝑖𝑗 + 𝑇𝑖)(𝜎0/𝜆𝑓)𝜆𝑗. 

This is solved by the quadratic formula for the biologically relevant positive term. Then fj = 1- fi. 

Proof that a stable mix of all three male types is impossible 

For clarity, we consider the case with all k’s = 0, σ0 = 1; all λ’s equal. 

A stable mix of all three male types requires that each type could invade a stable mix of the other 

two. So we need F312 > F112, F123 > F223, and F213 > F113. From the last two of those relationships, 

we have that 

𝛾1(𝑟1/𝑏1)(𝜏23 + 𝑇2) > 𝛾2(𝑟2/𝑏2)(𝜏23 + 𝑇1),  

and  𝛾2(𝑟2/𝑏2)(𝜏13 + 𝑇1) > 𝛾1(𝑟1/𝑏1)(𝜏13 + 𝑇2). 

Now substituting for τ23 and τ13 and simplifying, the two inequalities respectively yield  

𝛾1(𝑟1/𝑏1)𝑇2 > 𝛾2(𝑟2/𝑏2)𝑇1,  

and  𝛾2(𝑟2/𝑏2)𝑇1 > 𝛾1(𝑟1/𝑏1)𝑇2, a direct contradiction. Thus the three criteria cannot be 

simultaneously satisfied, and a stable mix of all three male types is impossible. Note that this 

contradiction implies that the successful invasion of a stable mix of types 2 and 3 by type 1 and 

the successful invasion of a stable mix of types 1 and 3 by type 2 are jointly impossible. Neither 



of these stable mixes involves female discrimination, and so the altered susceptibility to invasion 

when females discriminate is irrelevant to this main conclusion. 

Proof that a repeating sequence of the three male types is impossible 

As in the previous proof, we consider the case with all k’s = 0, σ0 = 1; all λ’s equal. 

A repeating sequence might go from dominance by type 1 to dominance by type 2 to type 3 to 

type 1 and so on (here called sequential replacement), or it might go from type 3 to type 2 to type 

1 to type 3 and so on (here called counter-sequential replacement). We show the proof that 

sequential replacement is impossible; the other proof proceeds in an analogous manner and thus 

will not be included here. 

Type 1 is unidirectionally replaced by type 2 if F21 > F11 and F22 > F12; type 2 is then 

replaced in like manner by type 3 if F32 > F22 and F33 > F23; and type 3 is replaced by type 1 if 

F13 > F33 and F11 > F31. 

Rearranging inequality F11 > F31 yields 
𝜏1

𝜏1+𝑇1
>

𝜆3𝛾3𝑟3

𝜆1𝛾1𝑟1/𝑏1
. Now we rearrange relationships 

F33 > F23 and F21 > F11 so that the λγr/b terms, one divided by the other, are on the greater-than 

side of the inequality in each case. In multiplying the greater-than sides together and then the 

less-than sides together, the inequality must still hold, yielding 
𝜆3𝛾3𝑟3

𝜆1𝛾1𝑟1/𝑏1
 >

𝜏3(𝜏1+𝑇2)

(𝜏3+𝑇2)(𝜏1+𝑇1)
. It 

follows that  
𝜏1

𝜏1+𝑇1
>

𝜏3(𝜏1+𝑇2)

(𝜏3+𝑇2)(𝜏1+𝑇1)
. Cross-multiplying and simplifying then results in τ1 > τ3. 

F13 > F33 implies that 
𝜏3

𝜏3+𝑇1
>

𝜆3𝛾3𝑟3

𝜆1𝛾1𝑟1/𝑏1
. Now again using the result derived from F33 > F23 and 

F21 > F11, we have 
𝜏3

𝜏3+𝑇1
>

𝜏3(𝜏1+𝑇2)

(𝜏3+𝑇2)(𝜏1+𝑇1)
. In this case, rearrangement yields 𝜏3(𝑇1 − 𝑇2) >

𝜏1(𝑇1 − 𝑇2). We are only interested in cases with T1 > T2, since γ1 > γ2, t1 > t2, and b1 < b2; and 

with discrimination, m1 > m2. This means that either τ3 > τ1 or τ3 = τ1 (based on lim
𝑇1→𝑇2

(
𝜏3

𝜏1
) = 1), 



which directly contradicts the result above. We conclude from this (and the analogous counter-

sequential result not shown) that a repeating sequence of the three male types is impossible. 

Online Resource 2. Finding Parameter Magnitudes for the Six Systems  

Japanese Water Striders 

Most male water striders engage exclusively in forced copulation, but Japanese water 

striders are an exception. Type 1 males are those that defend territories, call for mates, and guard 

their females while they lay eggs. Type 2 males are non-territorial males that only call for mates. 

Type 3 males are non-territorial males that engage in forced copulations. Flexibility in mating 

behavior is not correlated to male morphology, and the strategies chosen vary throughout the 

season (late March to early June), with type 1 strategies emerging mid-season (Hayashi 1985). 

We estimate r1 = r2 = 1 and r3 = 0.95 to account for the usurpation of female choice and effects 

of mating with a non-chosen male.  

The time females spend in reproduction is estimated from the average copulation time 

plus oviposition time (tf  = 0.00045). Type 1 males guard mates for as long as females oviposit (t1 

= tf), and type 2 males do not guard at all (t2 = 0.0001). Type 3 males guard only sometimes and 

are known to leave before the female has finished (t3 = 0.00022). The mating season lasts 

approximately 2 months (tn = 10), and there is no pairing fidelity (bi = 1) (Hayashi 1985). There 

is no information on the sex ratios of Japanese water striders, so we estimate equal λi values; but 

since water striders are known to have fluctuating sex ratios throughout the breeding season 

(Vepsalainen and Savolainen 1995), we explore the effect of this.  

There is no information on chances of fertilization for each type of mating strategy; 

however, water striders are believed to have sperm competition favoring the most recent sperm 

(displacing up to 65% of the previous male's sperm) (Rubenstein 1989). Since type 2 males mate 



first without an accompanying oviposition, we estimate a 30% chance of reproduction (γ2 = 0.3). 

Type 1 males mate-guard while the females oviposit, so we estimate a 90% chance of 

fertilization (γ1 = 0.9). As type 3 males mate when a female is unguarded, potentially displacing 

a previous male's sperm, we estimate a 60% chance of fertilizing (γ3 = 0.6) (Hayashi 1985). We 

explore a range of magnitudes for these parameters as well. 

Since there is no extra-pair copulation, the magnitudes of k12, k13, and k23 were set to zero. 

The discrimination coefficient D was estimated from assuming that the females are able to 

distinguish between type 1 and 2 males accurately approximately half the time in approximately 

10 minutes (D = 4300).   

Scorpionflies 

There are three mating strategies for male scorpionflies. Type 1 males guard an arthropod 

as a nuptial gift that the female consumes while mating. Type 2 males produce and offers a 

salivary mass; this strategy is linked to inability to find or defend an arthropod. Type 3 males 

engage in forced copulations with females without offering any nuptial gifts, either because they 

could not gain access to an arthropod and could not produce a salivary mass or because they 

have higher reproductive success via coercion (Thornhill 1980a,b, 1981, 1982).  

The r-values were chosen based on the number of eggs laid for each type of reproductive 

event. Females lay the most eggs with an arthropod nuptial gift; when given a salivary mass, they 

produce approximately two-thirds of the arthropod amount; in forced copulations, they produce 

approximately one-sixth of the arthropod amount (Thornhill 1982) (r1 = 1, r2 = 0.67, r3 = 0.17). 

The amount of time a female spends reproductive depends on the type of mating she received; 

she lays eggs much faster after a forced copulation than she does a consensual copulation 

(Thornhill 1982); we estimated by using the average of these (tf  = 0.052), though we explore this 



as well. Females are sexually receptive for all but the time that they are inseminated (Thornhill 

1982), which is included in tf, so we set tn = 0 to represent extended receptivity. Since egg 

batches seem to be fertilized by a single male, we set k12 = k13 = k23 = 0. 

Males do not differ in copulation time (Thornhill 1982), but males defending arthropods 

or salivary masses spend additional time guarding the nuptial gift. We estimate the time for 

arthropod-guarding to be approximately 30 minutes t and for salivary-guarding to be 

approximately 1 hr (t1 = 0.0036, t2 = 0.0048, t3 = 0.0024). There is no pairing fidelity (bi = 1). 

The reproductive sex ratio is 1:1 (Thornhill 1980b), but type 2 males and type 3 males are 

expected to have shorter reproductive lifespans than females or type 1 males (Thornhill 1980a, 

1981) (λf  = λ1 = 1, λ2 = 0.8, λ3 = 0.5). However, since type 1 males tend to find their insects in 

spider webs, and since spiders are the primary predators of scorpionflies (Thornhill 1980b), it is 

possible that type 1 and 2 males have the highest mortality rates, followed by type 3 (λf  = λ3 = 1, 

λ1 = 0.5, λ2 = 0.8).We explore this as well.  

Fertilization rates for type 1 and 2 males are approximately equal (γ1 = γ2 = 1) (Thornhill 

1981, 1982); when forced copulations are successful, they have an insemination rate of 

approximately 50% (Thornhill 1980b, 1982). However, since forced copulation is achieved in 

only about 22% of attempts, the insemination rate becomes 11% (γ3 = 0.11) (Thornhill 1980b). 

We explore both of these rates. For our default, we varied r2, with r3 being one-fourth of r2. 

Since there is no extra-pair copulation, the magnitudes of k12, k13, and k23 were set to zero. 

The discrimination coefficient D was estimated from the time females spend between mating 

events, estimated at one day (Thornhill 1974) (D = 21). 



Guppies 

Guppies have two different male mating strategies: those that display and are chosen by 

females to mate and those that engage in sneak copulations when females are unreceptive. Both 

are short-term matings, and we have designated them type 2 and type 3, respectively. Male 

reproductive behavior differs dramatically based on the level of predation they experience, so we 

did separate runs for low-predation environments and high-predation environments (Liley 1966).   

The reproductive success per reproductive cycle for type 2 and 3 males (r2 and r3) were 

set at 1, as there is no known influence on offspring success based on reproductive strategy; 

however, we vary the r-values to explore this. Females devote basically their entire lives to 

reproduction—they are either fertile and mating, pregnant, or giving birth. Their time 

commitment per birth event has been estimated as 24 hours (tf = 0.033) (B.D. Neff, personal 

communication). Because females are only sexually receptive during the first 3-5 days after 

giving birth (once per month) (Liley 1966; Magurran and Nowak 1991), we estimate the time 

that a female is not sexually receptive to be the other 26 days of the month (tn = 0.87). Type 2 

males spend approximately 5 seconds for each S-display (Luyten and Liley 1985) (t2 = 

0.0000014/month), and type 3 males considerably less (estimated at half of t2).  

There is no pair fidelity in guppies (bi = 1). The sex ratios vary depending on the 

population: in low-predator populations, females outnumber males almost four to one (Rodd and 

Reznick 1997) (λ1 = λ2 = λ3 = 0.28λf); in high predator, it is almost two to one (Rodd and Reznick 

1997) (λ1 = λ2 = λ3 = 0.53λf).  Time spent reproductive is approximately the same, except for the 

effects of predation on males, which influenced the sex ratios.  

Little is known about the chance of conceiving an offspring per reproductive event, but 

we estimated this based on the odds of each type of sexual event releasing sperm (Baerends et al. 



1955; Liley 1966;), the amount of sperm that each type successfully delivers (Pilastro et al. 

2002), the estimated number of events a female encounters each month (Magurran and Seghers 

1994), which varies based on predator status (Endler 1987), and on the number of males in each 

population, which also varies based on predator status (Rodd and Reznick 1997). Estimates for 

low predator populations are 0.0082 for S-display and 0.0013 for sneak attempts. For high 

predator populations, they are 0.014 and 0.0011, respectively. 

Since there is no extra-pair copulation, the magnitudes of k12, k13, and k23 were set to zero. 

The discrimination coefficient D was estimated from assuming that the male evaluation process 

lasts approximately 10 minutes of observing the sigmoid display (Liley 1966; Magurran and 

Nowak 1991) (D = 4300).   

Mallard Ducks 

 Mallard reproduction consists of long-term pairs that mate primarily consensually with 

each other; in addition to this type 1 strategy, however, males often switch strategies and 

sexually coerce females mated to other males. We are primarily interested in sexual coercion 

outside of mated pairs, though our fertilization calculation of type 1 males includes the negative 

influence of this secondary strategy. 

Offspring viability is significantly lower when females are coerced to mate with their 

non-primary partner (Bluhm and Gowaty 2004) (r1 = 1, r3 = 0.739). Females spend 

approximately 9 months in reproduction, from courtship to offspring maturing to flight (tf = 9); 

type 1 males invest the same amount of time up until hatching (t1 = 7) (Drilling et al. 2002). 

Type 3 males invest very little in reproduction (t3 = 0.0002). The probability of breakup in type 1 

relationships is very low (b1 = 0.019), while coercion results in immediate breakup (b = 1). The 

primary sex ratio is presumed to be 1 (Giudice 2003, but see Denk 2005).  



Reproductive lifetimes are similar for adult males and females, and we set λf = λ1 = λ2 = 

λ3 = 1. Hunting may help maintain the equal sex ratio in some populations; severely restricted 

hunting may result in a male-biased sex ratio (Giudice 2003). 

The empirically-established chance of a type 1 mating fertilizing an egg γ1 = 0.59, and for 

type 3 γ3 = 0.37 (Cunningham 2003). The rate of extra-pair paternity in mallards is 

approximately 14% (Denk 2005), and since all EPCs are coerced in mallards, this becomes the 

fraction of potential type 1 offspring instead fathered by type 3 males (k13 = 0.14; k12 = k23 = 0). 

As pairs usually take approximately one month to form at the beginning of courtship in 

the fall (Drilling et al. 2002), we estimated the time for a female to distinguish types 1 and 3 

males with a probability of 50% to be about 1 week (D = 3). 

Chimpanzees 

 Chimpanzee males have three different mating strategies. Type 1 males are chosen by 

females as consorts, spending an extended period of time mating exclusively with each other 

while she is in estrus and providing her with resources. Type 2 males are opportunistic males that 

copulate with females in estrus within the group. Type 3 males are possessive opportunistic 

males that aggressively defend estrus females from other males in order to mate exclusively with 

them (Tutin 1979). We set r1 = 1 and r2 = r3 = 0.9, as there was little evidence for differences in 

reproductive success for types 2 and 3.  

The birth interval, composed of mating, pregnancy, and rearing, is 70 months (tf  = 70). 

Type 1 males engage in approximately 10-day consorts with females (t1 = 0.3). Type 2 males are 

opportunistic and invest very little time in reproduction (t2 = 0.001, approximately 1 hour). Type 

3 males prevent the female from mating with other males while she is fertile, approximately 2-3 

days (t3 = 0.075) (Tutin 1979), and females spend approximately 26 days out of their 36-day 



cycle not in estrus (tn = 0.72) (Graham 1979). There is no pairing fidelity (the bi = 1), and the sex 

ratios are approximately equal. Females tend to be reproductive for slightly less time than the 

males (λf = 0.95 and λ1 = λ2 = λ3 = 1) (Tutin 1979).  

Approximately half of all consorts result in pregnancy (γ1 = 0.5) (Tutin 1979). In 

opportunistic mating, a female mates with approximately 12 males (Tutin 1979), so we estimate 

the chances of one of those males fertilizing an egg to be 1/12 (γ2 = 0.042). Since type 3 males 

spend approximately one quarter of the time that type 1 males spend per reproductive event 

(Tutin 1979), we estimate their chances of fertilization to be approximately one quarter that of 

type 1 (γ3 = 0.13). 

Since there is no extra-pair copulation, the magnitudes of k12, k13, and k23 were set to zero. 

As chimpanzee females regularly mate with males from outside of the group (Tutin 1979), it is 

reasonable to assume a female should be able to discern between the type 1 and 2 males with a 

probability of 50% in approximately 1 week (D = 3).  

Humans 

 In humans, type 1 males contribute time (and other resources) to child rearing; type 2 do 

not contribute appreciably in this way; and type 3 males coerce females when they encounter 

them. For default values, we set r1 = 1. In unigenerational families, raising a child without 

paternal support can have serious negative effects of offspring success (r2 = 0.9); however, 

humans evolved in extended family kin groups with extensive grandparent support, and children 

in these multigenerational families with only one mother have shown to have success at least 

equal to those from families with only one parent (DaLeire and Kalil 2002). We therefore 

consider r2 = 1 as well. We set r3 =0.90r2 to incorporate the physical, emotional, psychological, 

and social effects on children conceived from rape (see van Ee and Kleber 2013 for review). The 



time the female spends in reproduction is estimated based on time to conceive. This includes the 

typical within-pair time to conception (approximately10-12 months for 95% of couples; Potter 

and Parker 1964), the duration of pregnancy, and the duration of lactation (which varies 

culturally but averages around 1-1.5 years; Jones 1986; Jakobsen et al. 1996), resulting in an 

interbirth interval of approximately 3 years (tf  = t1 = 36).  

We assume that type 2 males engaging in short-term reproductive strategies spend 

approximately 1 month in each relationship (t2 = 1), with type 3 males spending approximately 2 

weeks in a relationship to take into account varying coercive strategies (date rape, kidnapping, 

stalking, etc.) (t3 = 0.5). We suggest that type 1 males have a 94% chance of remaining in a long-

term relationship after conceiving a child (b1 = 0.06—based on data from Kawamura 2009), 

whereas all other types breakup immediately after the reproductive event (b2 = b3 = 1). Women 

have a reproductive lifetime approximately 75% that of men (Carlier and Steeno 1984; Paulson 

et al. 2001; te Velde and Pearson 2002; Vincent et al. 2002; Anderson et al. 2003) (λf = 0.75). 

But type 1 males have high pair fidelity and generally tend to match the reproductive lifetime of 

their mates. So we set λ1 = λf = 0.75 but explore variation in operational sex ratio. 

Males who engage in a short-term reproductive strategy are prone to risky and criminal 

behavior and may thus depart early from the population either by decreased lifespan or 

incarceration (Lalumière and Quinsey 1996; Gladden et al. 2008; Jonason et al. 2009). We 

therefore estimate the reproductive lifetime of type 2 males to be slightly less than the 

physiological relative maximum of 1 (λ2 = 0.95), with an even lower reproductive lifetime of 

type 3 males (λ3 = 0.9). 

We estimated γ1 = 0.95, as 95% of couples conceive within 10-12 months (Potter and 

Parker 1964). We estimated the odds of conceiving for other males based on female fertility at 



different points in their cycle. Women have no chance of conceiving outside an approximate 6-

day window leading up to ovulation, with probability of conception during that 6-day window 

varying from 0.1 to 0.33 (Wilcox et al. 1995). Type 2 fertilization rates depend on the type of 

relationship. For the default, we address the effect of a “new, short-lived relationship” (six 

episodes of intercourse over two weeks, including the week of high fertility, γ2 = 0.44). We also 

consider a “one-night stand” outside the week of menstruation (γ2 = 0.061) and a “weekend 

fling” scenario (intercourse three times during the week of high fertility, γ2 = 0.516). For type 3 

males, evidence suggests that the per-incident pregnancy rate is approximately 0.08, which is 

higher than the random chance of fertilization, suggesting that type 3 males may be able to 

selectively choose women in the fertile phase of their cycle by detecting subtle cues of fertility 

and fecundity (Gottschall and Gottschall 2003) (γ3 = 0.08). 

We estimated k12 from the proportion of human births resulting from extra-pair paternity 

(Larmuseau et al. 2016). The magnitudes of k13 and k23 were set to 0.2 and 0.3, respectively, as 

rough guesses. We assume that if coercers were to become abundant in the population, a 

substantial proportion of births would result from coercion, despite protection that might be 

afforded by pairing with a type 1 or type 2 male. The level of protection would presumably be 

less with a type 2 male than with type 1. That these numbers are only guesses becomes important 

in the context of our results showing that if k13 is a substantial over-estimate, then the expected 

outcome for humans becomes a stable mix of types 1 and 2. Improved estimates of these extra-

pair paternity parameters is a high priority for future work with this model and more 

sophisticated successors. 

The discrimination coefficient D was estimated from assuming that an evaluation process 

lasting about one week should enable the female to distinguish types 1 and 2 males with a 



probability of 50% (D = 3). The out-of-estrus interval tn was set at 0.8 of a month (time unit), 

corresponding to the infertile proportion of the monthly cycle. 

 

Online Resource 3. Brief explanation of the MATLAB® computer program DatingGame used to 

obtain the main results 

 After the descriptive heading in the program listing is a list of parameters that can be 

modified to produce different runs. Each run generates four figures in the format of text Figures 

2, 4, and 5. The correspondence between the parameters in text Table 1 and those in the code is 

obvious with a few exceptions: D  in the text is del in the code; λ parameters in the text are lam 

parameters in the code; γ parameters in the text are gam parameters in the code; ω in the text is 

om in the code; σ in the supplement derivation is sigp in the code; and half and mult in the code 

are parameters that apply when the d(td) function is sigmoid rather than hyperbolic, a case not 

addressed either in the manuscript or the supplement. 

 Just below the parameter list in the code are three lines marked ***modify***. The four 

output graphs are plotted against an abscissa that runs from xmin to xmax and has a default 

magnitude of xdef. Below the vectors initialized with zeros is a line marked *****parameter 

being varied on x axis*****. This indicates that in the default run this parameter is r2. In the line 

immediately after, the magnitude of r3 is linked to that of r2 by the multiplier R23. This can be 

commented out when r3 is to remain fixed. When the run is based on varying r3 alone, both 

previous lines would be commented out and the comment symbol % would be removed from r3 

= x(i);. Obviously r1 could be varied in this way instead, or some other parameter of interest. 

Details of the graphics formatting can be altered in the final lines of code. The precision of the 



hill-climbing algorithms to find fitnesses and td is fixed in the code at 0.00001 (1e-5 in 

MATLAB), which seems to provide plenty of precision, but this could easily be adjusted. 

 Any problems implementing this program should be referred to the authors. 

 


